微软 vs Google:AI技术的王权更迭
时间:2023-04-04 00:00:00来自:第一财经字号:T  T

01

Google出拳

2023年2月3日星期五,Google云业务部门宣布了对人工智能初创公司Anthropic价值3亿美元的投资,约占这家公司股权的10%。这项投资有一个很现实的回报是:Anthropic今后将从Google采购更多的云计算服务。换句话说,Google这笔投资,主要是以它为一家人工智能公司长期提供云计算服务的方式来兑现。

对于每年要为算力烧掉上亿美元的人工智能公司来说,这样的安排并不罕见。3年多前,微软正是通过向OpenAI投资10亿美元,换得后者选择微软Azure作为独家云服务供应商,双方也就此完成了战略绑定。

事实上Google与Anthropic的这笔交易,在去年年底就已私下完成。选择在眼下这个时间点正式发布消息,反映出Google愈加迫切的心情:它急需将公众的注意力从微软、OpenAI还有ChatGPT那里夺回来。

这家在过去五六年间不断以“人工智能优先(AIFirst)”构筑公司技术创新形象的硅谷巨头,忽然间发现自己在长期引以为傲的人工智能领域,竟然失去了聚光灯下的位置。

现如今,每个人都在讨论OpenAI和ChatGPT,讨论这是不是人工智能界的“iPhone时刻”,很少有人记得GPT技术的理论基础——Transformer模型算法,是GoogleBrain的研究团队最先提出的。

Google投资的Anthropic公司,由OpenAI原研发副总裁达里奥·阿莫迪(DarioAmodei)于2020年年底在“对公司的发展方向存在分歧之后”,带领团队脱离OpenAI后创立,据称当时产生分歧的核心就在于阿莫迪不满于OpenAI逐渐成为微软的附庸。

阿莫迪在OpenAI工作过5年,领导了GPT-2和GPT-3的技术研发,属于项目最核心的成员之一。在加入OpenAI前,他还是GoogleBrain团队的一员。

02

微软的回击

Google希望尽快夺回公众的注意力,但微软瞄准Google要害的一击已经在来的路上。2月7日星期二上午10点,与Google宣布投资Anthropic仅仅隔了一个周末,在位于美国华盛顿州雷德蒙德的微软总部,CEO萨蒂亚·纳德拉宣布将OpenAI的最新技术集成到Bing搜索引擎和Edge浏览器的下一个版本中。他对外展示了一个能够与用户对话的搜索引擎:你只要提出问题,Bing在检索相关网页信息后直接以回答问题的方式将结果告诉用户。

“互联网搜索的范式在过去十多年间从未变化,但人工智能会让获取信息的方式更快更流畅,”纳德拉带着他一贯的和善笑容总结道,“这是搜索领域新的一天。”

微软这一招戳到了Google的命门。搜索是Google赖以为生的核心业务,搜索广告带来的收入占到公司总营收约57%。过去十多年来,Google垄断了全球搜索市场,份额始终保持在90%以上。相比之下,排名第二的Bing市场份额只有3%。Google太久没有感受到过威胁了,它只能仓促应对。

2月8日星期三晚间,Google在巴黎召开了发布会,推出一款类似ChatGPT的产品:Bard。对比前一天的微软发布会,Google的发布会处处显露出仓促——地点选择在地球另一边的巴黎,美国观众只能观看线上直播;发布会现场简陋又局促,看起来像是某个创业公司临时包下的一家咖啡馆;一位演讲者遗失了演示用的手机;发布会后有人指出Bard在演示中错误地回答了问题。

事实上,Bard并没有看起来那么糟糕,毕竟ChatGPT也常常满口胡话。但资本市场对于Google的应对并不买账,究其原因是Google在过去十余年里一步步在人工智能领域塑造出的独占鳌头的形象突然崩塌了。投资人发现,Google建立的技术壁垒并非高不可攀。

资本市场对于这场失败的发布会给出的负面反馈,直接掩盖了人们对于Bard的产品能力的正常讨论:Google股价在次日开盘后暴跌超7%,市值蒸发1000多亿美元。

这听起来像一幕新的英雄挑战恶龙的故事。有趣的是,这样的故事不止一次在微软与Google这两家公司之间上演过,只不过,上一次扮演恶龙的公司是微软。

03

曾经的恶龙

时间拉回到2008年,曾任微软首席AI科学家的邓力在神经信息处理系统大会(NIPS)上遇见了后来被誉为人工智能教父的杰弗里·辛顿(GeoffreyHinton),得知后者正在研究的一种神经网络的思路,可有效提高语音识别的效果。这个消息让邓力很心动,因为他大学时研究的就是神经网络。但他在微软的上司对这个思路并不感兴趣,邓力只好调动自己手头不多的经费买来3块GPU开展实验,隔年邓力又邀请辛顿到微软访问,二人进一步推进了神经网络的研究。

遗憾的是,这场合作在2010年终止。原因是卡内基梅隆大学计算机系原系主任PeterLee加入微软,开始负责整个雷德蒙德研究院的运营,他评估邓力的项目后表示这个神经网络的方法“非常荒谬”,在这个方向投入经费“纯属浪费”。

PeterLee代表了当时大部分微软科学家的态度。人工智能自1960年代以来,诞生了很多流派,目前最具影响力的就是统计机器学派和神经网络学派,前者崇尚严谨的推理证明,后者提倡先假设后验证。不过,神经网络流派曾经长期处于被严重打压的状态。

微软虽然早在1990年代就开始组建研究院从事人工智能方面的前沿研究,但此时刚好是神经网络学派最低谷的时期,在微软把持着关键岗位的科学家们基本

本站郑重声明:所载数据、文章仅供参考,使用前请核实,风险自负。
© 2008 北京济安金信科技有限公司 北京合富永道财经文化传媒有限公司
京ICP备12044478号 版权所有 复制必究
本站由 北京济安金信科技有限公司 提供技术支持