01引言
全球对人工智能的兴趣激增,在大洋彼岸的人工智能狂热中,如人工智能初创公司Inflection完成逾十亿美元的融资,同样规模的融资也发生在初创公司MosaicML,以逾十亿美元被Databricks所收购。在金融领域,OpenAI等人工智能厂商在过去数周继续主导着国外金融市场的AI新闻。穆迪携手微软和OpenAI合作,推出AI助手,帮助客户评估风险。瑞穗银行让员工使用AzureOpenAI,成为日本首家采用该技术的金融公司。
然而,如光锥智能(2023)所描述,“资本市场一冷一热所折射的,正是身处发展初期的中国AIGC产业,面对商业模式不清晰、技术层面的不足,大批国内创业者仍征途漫漫”,尽管人工智能已成为科技领域的投资热点,但国内市场对人工智能的态度似乎从近几个月中国初创企业的爆炸性增长的景象慢慢发生了改变,在算力发展受限等新的限制下,国内AIGC赛道的发展又将面临新的挑战。
AI创业者将在金融赛道中看到的,可能不仅是机会,其中也会看到行业中存在的特定门槛,以及一些面临的挑战。从年初到现在,非凡产研持续与AI赛道创业者及投资人保持深度交流和交易参与,并有幸采访到摸象科技、有连云、飞笛科技、熵简科技、深擎科技等在AI赛道中的优秀企业,探讨他们在金融行业中的经验和认知。
本文将从AI与金融场景结合的角度,结合访谈内容,探讨AI赛道中金融领域的独特性,体系化地呈现这些公司如何利用AI在金融赛道实现价值。
02AI+金融:特点
·AI与金融场景的结合,是金融科技的具象体现·
关于AI与金融的结合,相关单位2019年发布的《关于金融科技(FinTech)发展规划(2019-2021年)》中描述,金融科技属于金融与科技的深度融合。深度研发信息技术、人工智能、大数据等科技,并创造性使用,金融科技将在金融市场优化、服务水平提升、服务领域拓宽,及风险防范中发挥关键角色。作为基于技术带来的金融创新,金融科技具有颠覆业务模式、业务、流程与产品的潜力。
人工智能与机器学习过去主要服务于金融行业的信用评估和基础欺诈评分。新一代人工智能通过大型语言模型(LLM)处理非结构化数据能力和强大的算力,已为众多行业带来前所未有的赋能。一方面,金融行业、机构及公司拥有庞大的、覆盖多行业的历史数据,为训练行业模型提供了坚实的基础。然而另一方面,出于信息安全及合规的需要,金融行业往往更为谨慎。
目前,在金融行业的数字化转型的进程中,人工智能充当着日益重要的角色。作为目前集合庞大、广度深、复杂度且增长快速的技术学科,人工智能与金融场景的融合,可以说是金融科技的最具象体现。金融科技中的人工智能是利用人工智能进行金融数据分析、客户服务、供应链管理、交易建议等诸多领域的应用(EditorialTeam,2023)。
据TheBusiness(2023)统计,全球金融科技领域的人工智能市场规模从2022年的91.5亿美元增长到2023年的115.9亿美元,年复合增长率(CAGR)为26.8%,预计金融科技领域的人工智能市场规模将在2027年达到317.1亿美元,年复合增长率为28.6%。AI创业者将在金融赛道中看到的,可能不仅是机会,其中还包括行业中存在的特定门槛以、未来的挑战。
·AI与金融场景的结合,有它特定的门槛·
AI与金融场景的结合,有它特定的门槛,具体体现在人才、数据及技术壁垒、信息安全与合规等维度。
2.1关于人才AI与金融结合,不仅需要复合型人才,还对业务Knowhow有一定要求,以便更好地理解金融行业的逻辑和需求,这也是人才门槛的主要体现。在专业水平方面,AI与金融结合不仅要求AI具备足够的领域专业度,还要求人具备金融知识、金融工程、投资等方面的专业知识。
从专业度角度,飞笛科技丘慧慧表示,金融价值一方面体现在其让实体经济获得资金的支持,让实体经济得到持续增长;另一方面让资金的持有方合理投放,保持资产增值。从专业性角度,金融行业是信息行业中专业度、场景密度及频次都最深的行业,金融本身不直接创造价值,但它会赋能实体经济,它本身的价值是资金使用效率提高赋能实体经济、让资产保持增值,因此对团队及人才的专业度有一定要求。
从人才的复合角度,熵简科技费斌杰表示,AI在金融领域面临的核心挑战还是在人才端。这个行业需要更多的专业复合型人才,不仅对实战投研与数据科学知识的深度结合有较高要求,还要懂数据,比如具备调用模型、写Spark、Flink等技能。然而,这种级别的复合人才在市场上并不多。
此外,相比人才的数量,质量可能更为重要,比如打造出优秀产品的OpenAI,其团队人数其实并不多,但每位成员都是超级复合型专家。这种顶级的跨领域深度复合人才,是推动企业乃至整个行业发展的关键,而这种顶级人才的竞争也是最激烈的。
从专业与业务结合角度,有连云张岩阐述了AI技术应用与细分领域产品落地的关系。一方面金融领域对专业度要求较高,创业公司的团队构建往往需要懂金融且有技术开发背景的架构师等人才。另一方面,产品的落地需要技术与场景理解相结合,这要求团队能了解客户需求、并能够针对性地解决业务开展过程中的困难。其