"大数据杀熟"重罚可取吗
时间:2021-07-20 17:00:43来自:第一财经字号:T  T

近年来“数据杀熟”行为频现,多个网络购物、交通出行、餐饮服务等APP被曝出就同一商品或服务向老用户索取高于新用户的价格,引发社会各界广泛关注。

4月13日,国家市场监管总局会同中央网信办、税务总局召开互联网平台企业行政指导会,明确提出要严肃整治“数据杀熟”行为。6月29日,深圳市第七届人民代表大会常务委员会第二次会议通过的《深圳经济特区数据条例》(下称《条例》)亦对该问题作出了回应。《条例》第九十五条设置“数据杀熟”的处罚数额5000万元,这是现行法律的100倍。应该说该处罚数额相对于现行法律规范来讲具有突破性,能够对“数据杀熟”行为具有一定威慑与规制作用。但从当前互联网企业的发展体量来看,“数据杀熟重罚是否可取”还存在一定的探讨空间。

何谓“数据杀熟”

数据杀熟一般是用来指同样的商品或服务,老客户看到的价格反而比新客户要贵出许多的现象。数据杀熟并非专业的学术名词,也无确定的概念或定义。虽然“数据杀熟”这一名词从2018年才开始进入大众视野,成为“2018年度社会生活类十大流行语”,而且逐渐演化为今天需要被讨论“如何进行规制”,但“数据杀熟”这一现象却由来已久。

我们日常所谈的“需要被规制的数据杀熟”,主要表现为经济学上所讲的价格歧视(pricediscrimination),只不过数据杀熟将“杀熟”的主体范围限定在能够利用数据实施价格歧视的企业,并且将“杀熟”的对象范围限定在企业利用数据实施的价格歧视的受众。

从数据杀熟到价格歧视

价格歧视实质上是一种价格差异,通常指商品或服务的提供者在向不同的接受者提供相同等级、相同质量的商品或服务时,在接受者之间实行不同的销售价格或收费标准。经济学将“价格歧视”分为一级价格歧视、二级价格歧视以及三级价格歧视三种类型,其中,一级价格歧视,又称完全价格歧视,是指企业或商家针对每一消费者进行的个性化定价,这意味着企业或商家需要精准把握每一个消费者的消费或其他特征然后实施差异化定价,一般而言一级价格歧视在传统或者说非数字经济消费场景下较难实现,不过在数据场景下,一级价格歧视有了实现的可能,也即“数据杀熟”;二级价格歧视是指垄断厂商根据不同的购买量和消费者确定的价格,其典型是“数量折扣”,即对购买超过某一数量的产品部分给予较低的价格优惠,但不同消费者面临的是同一套价格体系;三级价格歧视,是指企业或商家在销售同一种商品时,根据不同市场上的需求价格弹性差异,实行不同的价格,例如针对不同的群体索取不一样的价格,三级价格歧视是最典型的价格歧视。

价格歧视并不必然需要法律的规制,一般而言,价格歧视作为企业的销售策略,能够帮助企业实现利润最大化,同时增加社会福利。“数据杀熟需要被规制”的呼声之所以这么高,是因为价格歧视发生在较大的互联网企业之间,并且颠覆了消费者原有的认知——企业利用数据并非对平台的新客户收取较高的价格,而是对平台的老客户实施了较高的定价。

应被规制的“数据杀熟”的临界点

从企业实施数据杀熟的行为来看,企业之所以会对老客户实施较高的定价而对新客户实施低价或者各种优惠政策,原因在于想要吸引新客户或者说新流量。新客户或者说新流量的背后其实就是数据,不论是新客户加入时所填写的各种注册信息,还是网上浏览时所留下的痕迹信息,都是数据。因此,企业的数据杀熟行为从另一侧面看也是在数据领域展开的竞争行为。

数据杀熟行为是商家基于算法优势,在分析用户喜好、支付能力等数据的基础上进行的个性化定价。不同于动态定价,个性化定价是在同一交易条件下,根据不同用户的购买意愿和支付能力进行的差异定价,而动态定价则是依据不同交易条件,计算交易成本,对交易价格进行的动态调整。交易条件是影响交易价格的重要因素,判断“数据杀熟”的关键在于判断交易活动是否处于同一交易条件下,这也是认定“数据杀熟”违法性的立足点。判断是否属于同一交易条件需要分两步走。

首先,确定影响交易成本的交易条件。此处的交易条件是指卖家在提供产品和服务时影响交易成本进而影响价格的各类要素,包括但不限于交易时间、交易地点、交易数量、付款方式等。不同的产品和服务,影响交易成本的条件并不相同,如在外卖配送服务中,配送时段和配送地点应当是其重点考虑的影响条件。

其次,判断交易条件是否同一。此处的同一条件仅需要前后大致相同即可,无需达到完全相同的程度。且此处仅需要核心的交易条件大致相似即可,无需所有交易条件均满足。

这一方法在实践中也有所应用。在2019年“刘权诉美团案”中,二审法院重点考量了交易时段这一重要交易条件,认为案件中影响价格的交易变量不只有新老账户,还有配送时段,且配送时段是影响配送费的重要因素。刘权与其同事下单时间并不一致,两者的配送费并不在同一交易条件下,不具备可比性。因此,此案中配送费的变化并不能完全被认定为是平台依据用户的数据,针对老顾客做出的价格欺诈行为。在2020年“胡红芳与携程纠纷案”中,原告表示携程平台上预定的酒店

  • 浏览记录
  • 我的关注
  • 涨幅
  • 跌幅
  • 振幅
  • 换手率
loading...
  • 涨幅
  • 跌幅
  • 振幅
  • 换手率
loading...
本站郑重声明:所载数据、文章仅供参考,使用前请核实,风险自负。
© 2008 北京济安金信科技有限公司 北京合富永道财经文化传媒有限公司
京ICP备12044478号 版权所有 复制必究
本站由 北京济安金信科技有限公司 提供技术支持